imported from "final" folder
This commit is contained in:
148
.pio/libdeps/esp01_1m/FastLED/examples/Audio/advanced/README.md
Normal file
148
.pio/libdeps/esp01_1m/FastLED/examples/Audio/advanced/README.md
Normal file
@@ -0,0 +1,148 @@
|
||||
# Audio Reactive Visualizations
|
||||
|
||||
This example demonstrates various audio-reactive visualization modes using FastLED. It processes real-time audio input and creates stunning visual effects synchronized to music.
|
||||
|
||||
## Features
|
||||
|
||||
### Visualization Modes
|
||||
|
||||
1. **Spectrum Bars** - Classic frequency spectrum analyzer with vertical bars
|
||||
2. **Radial Spectrum** - Circular frequency visualization radiating from center
|
||||
3. **Waveform** - Real-time audio waveform display
|
||||
4. **VU Meter** - Traditional volume unit meter with RMS and peak levels
|
||||
5. **Matrix Rain** - Audio-reactive digital rain effect
|
||||
6. **Fire Effect** - Flame simulation that responds to audio intensity
|
||||
7. **Plasma Wave** - Animated plasma patterns modulated by audio
|
||||
|
||||
### Audio Processing
|
||||
|
||||
- **Real-time FFT Analysis** - Frequency spectrum analysis
|
||||
- **Beat Detection** - Automatic beat detection with adjustable sensitivity
|
||||
- **Auto Gain Control** - Automatically adjusts to varying audio levels
|
||||
- **Noise Floor Filtering** - Removes background noise
|
||||
- **Peak Detection** - Tracks audio peaks with smoothing
|
||||
|
||||
### Visual Controls
|
||||
|
||||
- **7 Color Palettes** - Rainbow, Heat, Ocean, Forest, Party, Lava, Cloud
|
||||
- **Brightness Control** - Adjustable LED brightness
|
||||
- **Fade Speed** - Control trail/persistence effects
|
||||
- **Mirror Mode** - Create symmetrical displays
|
||||
- **Beat Flash** - Visual feedback on beat detection
|
||||
|
||||
## Hardware Requirements
|
||||
|
||||
- **Controller**: ESP32, Teensy, or other platform with sufficient memory
|
||||
- **LED Matrix**: 100x100 pixels (10,000 LEDs total)
|
||||
- **Memory**: Requires `SKETCH_HAS_LOTS_OF_MEMORY` (not suitable for Arduino UNO)
|
||||
- **Audio Input**: Microphone or line-in audio source
|
||||
|
||||
## Wiring
|
||||
|
||||
```
|
||||
LED Matrix:
|
||||
- Data Pin: GPIO 3 (configurable via LED_PIN)
|
||||
- Power: 5V (ensure adequate power supply for 10,000 LEDs!)
|
||||
- Ground: Common ground with controller
|
||||
|
||||
Audio Input:
|
||||
- Follow your platform's audio input configuration
|
||||
```
|
||||
|
||||
## Configuration
|
||||
|
||||
### Display Settings
|
||||
```cpp
|
||||
#define WIDTH 100 // Matrix width
|
||||
#define HEIGHT 100 // Matrix height
|
||||
#define LED_PIN 3 // Data pin for LEDs
|
||||
#define LED_TYPE WS2812B // LED chipset
|
||||
#define COLOR_ORDER GRB // Color order
|
||||
```
|
||||
|
||||
### Audio Settings
|
||||
```cpp
|
||||
#define SAMPLE_RATE 44100 // Audio sample rate
|
||||
#define FFT_SIZE 512 // FFT size for frequency analysis
|
||||
```
|
||||
|
||||
## UI Controls
|
||||
|
||||
### Master Controls
|
||||
- **Enable Audio** - Toggle audio processing on/off
|
||||
- **Visualization Mode** - Select from 7 different modes
|
||||
|
||||
### Audio Controls
|
||||
- **Audio Gain** - Manual gain adjustment (0.1 - 5.0)
|
||||
- **Noise Floor** - Background noise threshold (0.0 - 1.0)
|
||||
- **Auto Gain** - Enable automatic gain control
|
||||
|
||||
### Visual Controls
|
||||
- **Brightness** - LED brightness (0 - 255)
|
||||
- **Fade Speed** - Trail effect speed (0 - 255)
|
||||
- **Color Palette** - Choose color scheme
|
||||
- **Mirror Mode** - Enable symmetrical display
|
||||
|
||||
### Beat Detection
|
||||
- **Beat Detection** - Enable/disable beat detection
|
||||
- **Beat Sensitivity** - Adjust detection threshold (0.5 - 3.0)
|
||||
- **Beat Flash** - Enable visual flash on beats
|
||||
|
||||
## Usage
|
||||
|
||||
1. Upload the sketch to your controller
|
||||
2. Connect your LED matrix
|
||||
3. Provide audio input (microphone or line-in)
|
||||
4. Use the web UI to control visualizations
|
||||
5. Select different modes and adjust parameters in real-time
|
||||
|
||||
## Performance Tips
|
||||
|
||||
- This example requires significant processing power
|
||||
- Reduce matrix size if experiencing lag
|
||||
- Disable beat detection for lower CPU usage
|
||||
- Use simpler visualization modes on slower processors
|
||||
|
||||
## Customization
|
||||
|
||||
### Adding New Visualizations
|
||||
|
||||
1. Add your mode name to the `visualMode` dropdown
|
||||
2. Create a new `drawYourMode()` function
|
||||
3. Add a case in the main switch statement
|
||||
4. Implement your visualization logic
|
||||
|
||||
### Modifying Color Palettes
|
||||
|
||||
Edit the `getCurrentPalette()` function to add custom palettes:
|
||||
```cpp
|
||||
case 7: return YourCustomPalette_p;
|
||||
```
|
||||
|
||||
### Adjusting Matrix Size
|
||||
|
||||
For different matrix sizes, modify:
|
||||
```cpp
|
||||
#define WIDTH your_width
|
||||
#define HEIGHT your_height
|
||||
```
|
||||
|
||||
## Memory Usage
|
||||
|
||||
This example uses approximately:
|
||||
- 30KB for LED buffer (100x100 RGB)
|
||||
- 2KB for FFT data
|
||||
- 1KB for audio buffers
|
||||
- Additional memory for effect buffers
|
||||
|
||||
## Troubleshooting
|
||||
|
||||
- **No visualization**: Check audio input and "Enable Audio" setting
|
||||
- **Choppy animation**: Reduce matrix size or disable some features
|
||||
- **No beat detection**: Increase beat sensitivity or check audio levels
|
||||
- **Dim display**: Increase brightness or check power supply
|
||||
- **Compilation error**: Ensure platform has sufficient memory
|
||||
|
||||
## Credits
|
||||
|
||||
This example demonstrates the audio processing capabilities of FastLED, including FFT analysis, beat detection, and various visualization techniques suitable for LED art installations, music visualizers, and interactive displays.
|
||||
562
.pio/libdeps/esp01_1m/FastLED/examples/Audio/advanced/advanced.h
Normal file
562
.pio/libdeps/esp01_1m/FastLED/examples/Audio/advanced/advanced.h
Normal file
@@ -0,0 +1,562 @@
|
||||
/// @file AudioReactive.ino
|
||||
/// @brief Audio reactive visualization with multiple modes
|
||||
/// @example AudioReactive.ino
|
||||
|
||||
#include <Arduino.h>
|
||||
#include <FastLED.h>
|
||||
|
||||
|
||||
|
||||
#include "fl/ui.h"
|
||||
#include "fl/audio.h"
|
||||
#include "fl/fft.h"
|
||||
#include "fl/xymap.h"
|
||||
#include "fl/math.h"
|
||||
#include "fl/math_macros.h"
|
||||
|
||||
#include "fl/compiler_control.h"
|
||||
|
||||
// This is used by fastled because we have extremely strict compiler settings.
|
||||
// Stock Arduino/Platformio does not need these.
|
||||
FL_DISABLE_WARNING_PUSH
|
||||
FL_DISABLE_WARNING(float-conversion)
|
||||
FL_DISABLE_WARNING(sign-conversion)
|
||||
|
||||
|
||||
using namespace fl;
|
||||
|
||||
// Display configuration
|
||||
// For WebAssembly, use a smaller display to avoid memory issues
|
||||
#ifdef __EMSCRIPTEN__
|
||||
#define WIDTH 32
|
||||
#define HEIGHT 32
|
||||
#else
|
||||
#define WIDTH 64
|
||||
#define HEIGHT 64
|
||||
#endif
|
||||
#define NUM_LEDS (WIDTH * HEIGHT)
|
||||
#define LED_PIN 3
|
||||
#define LED_TYPE WS2812B
|
||||
#define COLOR_ORDER GRB
|
||||
|
||||
// Audio configuration
|
||||
#define SAMPLE_RATE 44100
|
||||
#define FFT_SIZE 512
|
||||
|
||||
// UI Elements
|
||||
UITitle title("Audio Reactive Visualizations");
|
||||
UIDescription description("Real-time audio visualizations with beat detection and multiple modes");
|
||||
|
||||
// Master controls
|
||||
UICheckbox enableAudio("Enable Audio", true);
|
||||
UIDropdown visualMode("Visualization Mode",
|
||||
{"Spectrum Bars", "Radial Spectrum", "Waveform", "VU Meter", "Matrix Rain", "Fire Effect", "Plasma Wave"});
|
||||
|
||||
// Audio controls
|
||||
UISlider audioGain("Audio Gain", 1.0f, 0.1f, 5.0f, 0.1f);
|
||||
UISlider noiseFloor("Noise Floor", 0.1f, 0.0f, 1.0f, 0.01f);
|
||||
UICheckbox autoGain("Auto Gain", true);
|
||||
|
||||
// Visual controls
|
||||
UISlider brightness("Brightness", 128, 0, 255, 1);
|
||||
UISlider fadeSpeed("Fade Speed", 20, 0, 255, 1);
|
||||
UIDropdown colorPalette("Color Palette",
|
||||
{"Rainbow", "Heat", "Ocean", "Forest", "Party", "Lava", "Cloud"});
|
||||
UICheckbox mirrorMode("Mirror Mode", false);
|
||||
|
||||
// Beat detection
|
||||
UICheckbox beatDetect("Beat Detection", true);
|
||||
UISlider beatSensitivity("Beat Sensitivity", 1.5f, 0.5f, 3.0f, 0.1f);
|
||||
UICheckbox beatFlash("Beat Flash", true);
|
||||
|
||||
// Audio input
|
||||
UIAudio audio("Audio Input");
|
||||
|
||||
// Global variables
|
||||
CRGB leds[NUM_LEDS];
|
||||
XYMap xyMap(WIDTH, HEIGHT, false);
|
||||
SoundLevelMeter soundMeter(0.0, 0.0);
|
||||
|
||||
// Audio processing variables - keep these smaller for WebAssembly
|
||||
static const int NUM_BANDS = 16; // Reduced from 32
|
||||
float fftSmooth[NUM_BANDS] = {0};
|
||||
float beatHistory[20] = {0}; // Reduced from 43
|
||||
int beatHistoryIndex = 0;
|
||||
float beatAverage = 0;
|
||||
float beatVariance = 0;
|
||||
uint32_t lastBeatTime = 0;
|
||||
bool isBeat = false;
|
||||
float autoGainValue = 1.0f;
|
||||
float peakLevel = 0;
|
||||
|
||||
// Visual effect variables
|
||||
uint8_t hue = 0;
|
||||
// Remove large static arrays for WebAssembly
|
||||
#ifndef __EMSCRIPTEN__
|
||||
float plasma[WIDTH][HEIGHT] = {{0}};
|
||||
uint8_t fireBuffer[WIDTH][HEIGHT] = {{0}};
|
||||
#endif
|
||||
|
||||
// Get current color palette
|
||||
CRGBPalette16 getCurrentPalette() {
|
||||
switch(colorPalette.as_int()) {
|
||||
case 0: return CRGBPalette16(RainbowColors_p);
|
||||
case 1: return CRGBPalette16(HeatColors_p);
|
||||
case 2: return CRGBPalette16(OceanColors_p);
|
||||
case 3: return CRGBPalette16(ForestColors_p);
|
||||
case 4: return CRGBPalette16(PartyColors_p);
|
||||
case 5: return CRGBPalette16(LavaColors_p);
|
||||
case 6: return CRGBPalette16(CloudColors_p);
|
||||
default: return CRGBPalette16(RainbowColors_p);
|
||||
}
|
||||
}
|
||||
|
||||
// Beat detection algorithm
|
||||
bool detectBeat(float energy) {
|
||||
beatHistory[beatHistoryIndex] = energy;
|
||||
beatHistoryIndex = (beatHistoryIndex + 1) % 20;
|
||||
|
||||
// Calculate average
|
||||
beatAverage = 0;
|
||||
for (int i = 0; i < 20; i++) {
|
||||
beatAverage += beatHistory[i];
|
||||
}
|
||||
beatAverage /= 20.0f;
|
||||
|
||||
// Calculate variance
|
||||
beatVariance = 0;
|
||||
for (int i = 0; i < 20; i++) {
|
||||
float diff = beatHistory[i] - beatAverage;
|
||||
beatVariance += diff * diff;
|
||||
}
|
||||
beatVariance /= 20.0f;
|
||||
|
||||
// Detect beat
|
||||
float threshold = beatAverage + (beatSensitivity.value() * sqrt(beatVariance));
|
||||
uint32_t currentTime = millis();
|
||||
|
||||
if (energy > threshold && (currentTime - lastBeatTime) > 80) {
|
||||
lastBeatTime = currentTime;
|
||||
return true;
|
||||
}
|
||||
return false;
|
||||
}
|
||||
|
||||
// Update auto gain
|
||||
void updateAutoGain(float level) {
|
||||
if (!autoGain) {
|
||||
autoGainValue = 1.0f;
|
||||
return;
|
||||
}
|
||||
|
||||
static float targetLevel = 0.7f;
|
||||
static float avgLevel = 0.0f;
|
||||
|
||||
avgLevel = avgLevel * 0.95f + level * 0.05f;
|
||||
|
||||
if (avgLevel > 0.01f) {
|
||||
float gainAdjust = targetLevel / avgLevel;
|
||||
gainAdjust = fl::clamp(gainAdjust, 0.5f, 2.0f);
|
||||
autoGainValue = autoGainValue * 0.9f + gainAdjust * 0.1f;
|
||||
}
|
||||
}
|
||||
|
||||
// Clear display
|
||||
void clearDisplay() {
|
||||
if (fadeSpeed.as_int() == 0) {
|
||||
fill_solid(leds, NUM_LEDS, CRGB::Black);
|
||||
} else {
|
||||
fadeToBlackBy(leds, NUM_LEDS, fadeSpeed.as_int());
|
||||
}
|
||||
}
|
||||
|
||||
// Visualization: Spectrum Bars
|
||||
void drawSpectrumBars(FFTBins* fft, float /* peak */) {
|
||||
clearDisplay();
|
||||
CRGBPalette16 palette = getCurrentPalette();
|
||||
|
||||
int barWidth = WIDTH / NUM_BANDS;
|
||||
|
||||
for (size_t band = 0; band < NUM_BANDS && band < fft->bins_db.size(); band++) {
|
||||
float magnitude = fft->bins_db[band];
|
||||
|
||||
// Apply noise floor
|
||||
magnitude = magnitude / 100.0f; // Normalize from dB
|
||||
magnitude = MAX(0.0f, magnitude - noiseFloor.value());
|
||||
|
||||
// Smooth the FFT
|
||||
fftSmooth[band] = fftSmooth[band] * 0.8f + magnitude * 0.2f;
|
||||
magnitude = fftSmooth[band];
|
||||
|
||||
// Apply gain
|
||||
magnitude *= audioGain.value() * autoGainValue;
|
||||
magnitude = fl::clamp(magnitude, 0.0f, 1.0f);
|
||||
|
||||
int barHeight = magnitude * HEIGHT;
|
||||
int xStart = band * barWidth;
|
||||
|
||||
for (int x = 0; x < barWidth - 1; x++) {
|
||||
for (int y = 0; y < barHeight; y++) {
|
||||
uint8_t colorIndex = fl::map_range<float, uint8_t>(
|
||||
float(y) / HEIGHT, 0, 1, 0, 255
|
||||
);
|
||||
CRGB color = ColorFromPalette(palette, colorIndex + hue);
|
||||
|
||||
int ledIndex = xyMap(xStart + x, y);
|
||||
if (ledIndex >= 0 && ledIndex < NUM_LEDS) {
|
||||
leds[ledIndex] = color;
|
||||
}
|
||||
|
||||
if (mirrorMode) {
|
||||
int mirrorIndex = xyMap(WIDTH - 1 - (xStart + x), y);
|
||||
if (mirrorIndex >= 0 && mirrorIndex < NUM_LEDS) {
|
||||
leds[mirrorIndex] = color;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Visualization: Radial Spectrum
|
||||
void drawRadialSpectrum(FFTBins* fft, float /* peak */) {
|
||||
clearDisplay();
|
||||
CRGBPalette16 palette = getCurrentPalette();
|
||||
|
||||
int centerX = WIDTH / 2;
|
||||
int centerY = HEIGHT / 2;
|
||||
|
||||
for (size_t angle = 0; angle < 360; angle += 6) { // Reduced resolution
|
||||
size_t band = (angle / 6) % NUM_BANDS;
|
||||
if (band >= fft->bins_db.size()) continue;
|
||||
|
||||
float magnitude = fft->bins_db[band] / 100.0f;
|
||||
magnitude = MAX(0.0f, magnitude - noiseFloor.value());
|
||||
magnitude *= audioGain.value() * autoGainValue;
|
||||
magnitude = fl::clamp(magnitude, 0.0f, 1.0f);
|
||||
|
||||
int radius = magnitude * (MIN(WIDTH, HEIGHT) / 2);
|
||||
|
||||
for (int r = 0; r < radius; r++) {
|
||||
int x = centerX + (r * cosf(angle * PI / 180.0f));
|
||||
int y = centerY + (r * sinf(angle * PI / 180.0f));
|
||||
|
||||
if (x >= 0 && x < WIDTH && y >= 0 && y < HEIGHT) {
|
||||
uint8_t colorIndex = fl::map_range<int, uint8_t>(r, 0, radius, 255, 0);
|
||||
int ledIndex = xyMap(x, y);
|
||||
if (ledIndex >= 0 && ledIndex < NUM_LEDS) {
|
||||
leds[ledIndex] = ColorFromPalette(palette, colorIndex + hue);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Visualization: Logarithmic Waveform (prevents saturation)
|
||||
void drawWaveform(const Slice<const int16_t>& pcm, float /* peak */) {
|
||||
clearDisplay();
|
||||
CRGBPalette16 palette = getCurrentPalette();
|
||||
|
||||
int samplesPerPixel = pcm.size() / WIDTH;
|
||||
int centerY = HEIGHT / 2;
|
||||
|
||||
for (size_t x = 0; x < WIDTH; x++) {
|
||||
size_t sampleIndex = x * samplesPerPixel;
|
||||
if (sampleIndex >= pcm.size()) break;
|
||||
|
||||
// Get the raw sample value
|
||||
float sample = float(pcm[sampleIndex]) / 32768.0f; // Normalize to -1.0 to 1.0
|
||||
|
||||
// Apply logarithmic scaling to prevent saturation
|
||||
float absSample = fabsf(sample);
|
||||
float logAmplitude = 0.0f;
|
||||
|
||||
if (absSample > 0.001f) { // Avoid log(0)
|
||||
// Logarithmic compression: log10(1 + gain * sample)
|
||||
float scaledSample = absSample * audioGain.value() * autoGainValue;
|
||||
logAmplitude = log10f(1.0f + scaledSample * 9.0f) / log10f(10.0f); // Normalize to 0-1
|
||||
}
|
||||
|
||||
// Apply smooth sensitivity curve
|
||||
logAmplitude = powf(logAmplitude, 0.7f); // Gamma correction for better visual response
|
||||
|
||||
// Calculate amplitude in pixels
|
||||
int amplitude = int(logAmplitude * (HEIGHT / 2));
|
||||
amplitude = fl::clamp(amplitude, 0, HEIGHT / 2);
|
||||
|
||||
// Preserve the sign for proper waveform display
|
||||
if (sample < 0) amplitude = -amplitude;
|
||||
|
||||
// Color mapping based on amplitude intensity
|
||||
uint8_t colorIndex = fl::map_range<int, uint8_t>(abs(amplitude), 0, HEIGHT/2, 40, 255);
|
||||
CRGB color = ColorFromPalette(palette, colorIndex + hue);
|
||||
|
||||
// Apply brightness scaling for low amplitudes
|
||||
if (abs(amplitude) < HEIGHT / 4) {
|
||||
color.fadeToBlackBy(128 - (abs(amplitude) * 512 / HEIGHT));
|
||||
}
|
||||
|
||||
// Draw vertical line from center
|
||||
if (amplitude == 0) {
|
||||
// Draw center point for zero amplitude
|
||||
int ledIndex = xyMap(x, centerY);
|
||||
if (ledIndex >= 0 && ledIndex < NUM_LEDS) {
|
||||
leds[ledIndex] = color.fadeToBlackBy(200);
|
||||
}
|
||||
} else {
|
||||
// Draw line from center to amplitude
|
||||
int startY = (amplitude > 0) ? centerY : centerY + amplitude;
|
||||
int endY = (amplitude > 0) ? centerY + amplitude : centerY;
|
||||
|
||||
for (int y = startY; y <= endY; y++) {
|
||||
if (y >= 0 && y < HEIGHT) {
|
||||
int ledIndex = xyMap(x, y);
|
||||
if (ledIndex >= 0 && ledIndex < NUM_LEDS) {
|
||||
// Fade edges for smoother appearance
|
||||
CRGB pixelColor = color;
|
||||
if (y == startY || y == endY) {
|
||||
pixelColor.fadeToBlackBy(100);
|
||||
}
|
||||
leds[ledIndex] = pixelColor;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Visualization: VU Meter
|
||||
void drawVUMeter(float rms, float peak) {
|
||||
clearDisplay();
|
||||
CRGBPalette16 palette = getCurrentPalette();
|
||||
|
||||
// RMS level bar
|
||||
int rmsWidth = rms * WIDTH * audioGain.value() * autoGainValue;
|
||||
rmsWidth = MIN(rmsWidth, WIDTH);
|
||||
|
||||
for (int x = 0; x < rmsWidth; x++) {
|
||||
for (int y = HEIGHT/3; y < 2*HEIGHT/3; y++) {
|
||||
uint8_t colorIndex = fl::map_range<int, uint8_t>(x, 0, WIDTH, 0, 255);
|
||||
int ledIndex = xyMap(x, y);
|
||||
if (ledIndex >= 0 && ledIndex < NUM_LEDS) {
|
||||
leds[ledIndex] = ColorFromPalette(palette, colorIndex);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Peak indicator
|
||||
int peakX = peak * WIDTH * audioGain.value() * autoGainValue;
|
||||
peakX = MIN(peakX, WIDTH - 1);
|
||||
|
||||
for (int y = HEIGHT/4; y < 3*HEIGHT/4; y++) {
|
||||
int ledIndex = xyMap(peakX, y);
|
||||
if (ledIndex >= 0 && ledIndex < NUM_LEDS) {
|
||||
leds[ledIndex] = CRGB::White;
|
||||
}
|
||||
}
|
||||
|
||||
// Beat indicator
|
||||
if (isBeat && beatFlash) {
|
||||
for (int x = 0; x < WIDTH; x++) {
|
||||
int ledIndex1 = xyMap(x, 0);
|
||||
int ledIndex2 = xyMap(x, HEIGHT - 1);
|
||||
if (ledIndex1 >= 0 && ledIndex1 < NUM_LEDS) leds[ledIndex1] = CRGB::White;
|
||||
if (ledIndex2 >= 0 && ledIndex2 < NUM_LEDS) leds[ledIndex2] = CRGB::White;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Visualization: Matrix Rain
|
||||
void drawMatrixRain(float peak) {
|
||||
// Shift everything down
|
||||
for (int x = 0; x < WIDTH; x++) {
|
||||
for (int y = HEIGHT - 1; y > 0; y--) {
|
||||
int currentIndex = xyMap(x, y);
|
||||
int aboveIndex = xyMap(x, y - 1);
|
||||
if (currentIndex >= 0 && currentIndex < NUM_LEDS &&
|
||||
aboveIndex >= 0 && aboveIndex < NUM_LEDS) {
|
||||
leds[currentIndex] = leds[aboveIndex];
|
||||
leds[currentIndex].fadeToBlackBy(40);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Add new drops based on audio
|
||||
int numDrops = peak * WIDTH * audioGain.value() * autoGainValue;
|
||||
for (int i = 0; i < numDrops; i++) {
|
||||
int x = random(WIDTH);
|
||||
int ledIndex = xyMap(x, 0);
|
||||
if (ledIndex >= 0 && ledIndex < NUM_LEDS) {
|
||||
leds[ledIndex] = CHSV(96, 255, 255); // Green
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Visualization: Fire Effect (simplified for WebAssembly)
|
||||
void drawFireEffect(float peak) {
|
||||
// Simple fire effect without buffer
|
||||
clearDisplay();
|
||||
|
||||
// Add heat at bottom based on audio
|
||||
int heat = 100 + (peak * 155 * audioGain.value() * autoGainValue);
|
||||
heat = MIN(heat, 255);
|
||||
|
||||
for (int x = 0; x < WIDTH; x++) {
|
||||
for (int y = 0; y < HEIGHT; y++) {
|
||||
// Simple gradient from bottom to top
|
||||
int heatLevel = heat * (HEIGHT - y) / HEIGHT;
|
||||
heatLevel = heatLevel * random(80, 120) / 100; // Add randomness
|
||||
heatLevel = MIN(heatLevel, 255);
|
||||
|
||||
int ledIndex = xyMap(x, y);
|
||||
if (ledIndex >= 0 && ledIndex < NUM_LEDS) {
|
||||
leds[ledIndex] = HeatColor(heatLevel);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Visualization: Plasma Wave
|
||||
void drawPlasmaWave(float peak) {
|
||||
static float time = 0;
|
||||
time += 0.05f + (peak * 0.2f);
|
||||
|
||||
CRGBPalette16 palette = getCurrentPalette();
|
||||
|
||||
for (int x = 0; x < WIDTH; x++) {
|
||||
for (int y = 0; y < HEIGHT; y++) {
|
||||
float value = sinf(x * 0.1f + time) +
|
||||
sinf(y * 0.1f - time) +
|
||||
sinf((x + y) * 0.1f + time) +
|
||||
sinf(sqrtf(x * x + y * y) * 0.1f - time);
|
||||
|
||||
value = (value + 4) / 8; // Normalize to 0-1
|
||||
value *= audioGain.value() * autoGainValue;
|
||||
|
||||
uint8_t colorIndex = value * 255;
|
||||
int ledIndex = xyMap(x, y);
|
||||
if (ledIndex >= 0 && ledIndex < NUM_LEDS) {
|
||||
leds[ledIndex] = ColorFromPalette(palette, colorIndex + hue);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void setup() {
|
||||
Serial.begin(115200);
|
||||
delay(1000);
|
||||
|
||||
Serial.println("Audio Reactive Visualizations");
|
||||
Serial.println("Initializing...");
|
||||
Serial.print("Display size: ");
|
||||
Serial.print(WIDTH);
|
||||
Serial.print("x");
|
||||
Serial.println(HEIGHT);
|
||||
|
||||
// Initialize LEDs
|
||||
FastLED.addLeds<LED_TYPE, LED_PIN, COLOR_ORDER>(leds, NUM_LEDS);
|
||||
FastLED.setBrightness(brightness.as_int());
|
||||
FastLED.clear();
|
||||
FastLED.show();
|
||||
|
||||
// Set up UI callbacks
|
||||
brightness.onChanged([](float value) {
|
||||
FastLED.setBrightness(value);
|
||||
});
|
||||
|
||||
Serial.println("Setup complete!");
|
||||
}
|
||||
|
||||
void loop() {
|
||||
// Check if audio is enabled
|
||||
if (!enableAudio) {
|
||||
// Show a simple test pattern
|
||||
fill_rainbow(leds, NUM_LEDS, hue++, 7);
|
||||
FastLED.show();
|
||||
delay(20);
|
||||
return;
|
||||
}
|
||||
|
||||
// Process only one audio sample per frame to avoid accumulation
|
||||
AudioSample sample = audio.next();
|
||||
if (sample.isValid()) {
|
||||
// Update sound meter
|
||||
soundMeter.processBlock(sample.pcm());
|
||||
|
||||
// Get audio levels
|
||||
float rms = sample.rms() / 32768.0f;
|
||||
|
||||
// Calculate peak
|
||||
int32_t maxSample = 0;
|
||||
for (size_t i = 0; i < sample.pcm().size(); i++) {
|
||||
int32_t absSample = fabsf(sample.pcm()[i]);
|
||||
if (absSample > maxSample) {
|
||||
maxSample = absSample;
|
||||
}
|
||||
}
|
||||
float peak = float(maxSample) / 32768.0f;
|
||||
peakLevel = peakLevel * 0.9f + peak * 0.1f; // Smooth peak
|
||||
|
||||
// Update auto gain
|
||||
updateAutoGain(rms);
|
||||
|
||||
// Beat detection
|
||||
if (beatDetect) {
|
||||
isBeat = detectBeat(peak);
|
||||
}
|
||||
|
||||
// Get FFT data - create local FFTBins to avoid accumulation
|
||||
FFTBins fftBins(NUM_BANDS);
|
||||
sample.fft(&fftBins);
|
||||
|
||||
// Update color animation
|
||||
hue += 1;
|
||||
|
||||
// Apply beat flash
|
||||
if (isBeat && beatFlash) {
|
||||
for (int i = 0; i < NUM_LEDS; i++) {
|
||||
leds[i].fadeLightBy(-50); // Make brighter
|
||||
}
|
||||
}
|
||||
|
||||
// Draw selected visualization
|
||||
switch (visualMode.as_int()) {
|
||||
case 0: // Spectrum Bars
|
||||
drawSpectrumBars(&fftBins, peakLevel);
|
||||
break;
|
||||
|
||||
case 1: // Radial Spectrum
|
||||
drawRadialSpectrum(&fftBins, peakLevel);
|
||||
break;
|
||||
|
||||
case 2: // Waveform
|
||||
drawWaveform(sample.pcm(), peakLevel);
|
||||
break;
|
||||
|
||||
case 3: // VU Meter
|
||||
drawVUMeter(rms, peakLevel);
|
||||
break;
|
||||
|
||||
case 4: // Matrix Rain
|
||||
drawMatrixRain(peakLevel);
|
||||
break;
|
||||
|
||||
case 5: // Fire Effect
|
||||
drawFireEffect(peakLevel);
|
||||
break;
|
||||
|
||||
case 6: // Plasma Wave
|
||||
drawPlasmaWave(peakLevel);
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
FastLED.show();
|
||||
|
||||
// Add a small delay to prevent tight loops in WebAssembly
|
||||
#ifdef __EMSCRIPTEN__
|
||||
delay(1);
|
||||
#endif
|
||||
}
|
||||
|
||||
FL_DISABLE_WARNING_POP
|
||||
Reference in New Issue
Block a user