imported from "final" folder

This commit is contained in:
2025-11-28 12:12:50 +01:00
parent f9288986cf
commit ff8e725b35
1061 changed files with 225150 additions and 96 deletions

View File

@@ -0,0 +1,682 @@
/// @file FxNoiseRing.ino
/// @brief Noise effect on circular ring with ScreenMap
/// @example FxNoiseRing.ino
///
/// This sketch is fully compatible with the FastLED web compiler. To use it do the following:
/// 1. Install Fastled: `pip install fastled`
/// 2. cd into this examples page.
/// 3. Run the FastLED web compiler at root: `fastled`
/// 4. When the compiler is done a web page will open.
#include <Arduino.h>
#include <FastLED.h>
#include "fl/json.h"
#include "fl/math_macros.h"
#include "fl/warn.h"
#include "noisegen.h"
#include "fl/screenmap.h"
#include "fl/slice.h"
#include "fl/ui.h"
#include "sensors/pir.h"
#include "./simple_timer.h"
#include "fl/sstream.h"
#include "fl/assert.h"
#define LED_PIN 2
#define COLOR_ORDER GRB // Color order matters for a real device, web-compiler will ignore this.
#define NUM_LEDS 250
#define PIN_PIR 0
#define PIR_LATCH_MS 60000 // how long to keep the PIR sensor active after a trigger
#define PIR_RISING_TIME 1000 // how long to fade in the PIR sensor
#define PIR_FALLING_TIME 1000 // how long to fade out the PIR sensor
using namespace fl;
CRGB leds[NUM_LEDS];
// Enhanced coordinate system for ring-based effects
struct RingCoord {
float angle; // Position on ring (0 to 2π)
float radius; // Distance from center (normalized 0-1)
float x, y; // Cartesian coordinates
int led_index; // LED position on strip
};
// Convert LED index to ring coordinates
RingCoord calculateRingCoord(int led_index, int num_leds, float time_offset = 0.0f) {
RingCoord coord;
coord.led_index = led_index;
coord.angle = (led_index * 2.0f * M_PI / num_leds) + time_offset;
coord.radius = 1.0f; // Fixed radius for ring
coord.x = cos(coord.angle);
coord.y = sin(coord.angle);
return coord;
}
// Performance optimization with lookup tables
class RingLUT {
private:
float cos_table[NUM_LEDS];
float sin_table[NUM_LEDS];
public:
void initialize() {
for(int i = 0; i < NUM_LEDS; i++) {
float angle = i * 2.0f * M_PI / NUM_LEDS;
cos_table[i] = cos(angle);
sin_table[i] = sin(angle);
}
}
RingCoord fastRingCoord(int led_index, float time_offset = 0.0f) {
RingCoord coord;
coord.led_index = led_index;
coord.angle = (led_index * 2.0f * M_PI / NUM_LEDS) + time_offset;
coord.x = cos_table[led_index];
coord.y = sin_table[led_index];
coord.radius = 1.0f;
return coord;
}
};
// Plasma wave parameters
struct PlasmaParams {
float time_scale = 1.0f;
float noise_intensity = 0.5f;
float noise_amplitude = 0.8f;
uint8_t time_bitshift = 5;
uint8_t hue_offset = 0;
float brightness = 1.0f;
};
// Plasma wave generator - Featured Implementation
class PlasmaWaveGenerator {
private:
struct WaveSource {
float x, y; // Source position
float frequency; // Wave frequency
float amplitude; // Wave strength
float phase_speed; // Phase evolution rate
};
WaveSource sources[4] = {
{0.5f, 0.5f, 1.0f, 1.0f, 0.8f}, // Center source
{0.0f, 0.0f, 1.5f, 0.8f, 1.2f}, // Corner source
{1.0f, 1.0f, 0.8f, 1.2f, 0.6f}, // Opposite corner
{0.5f, 0.0f, 1.2f, 0.9f, 1.0f} // Edge source
};
public:
CRGB calculatePlasmaPixel(const RingCoord& coord, uint32_t time_ms, const PlasmaParams& params) {
float time_scaled = time_ms * params.time_scale * 0.001f;
// Calculate wave interference
float wave_sum = 0.0f;
for (int i = 0; i < 4; i++) {
float dx = coord.x - sources[i].x;
float dy = coord.y - sources[i].y;
float distance = sqrt(dx*dx + dy*dy);
float wave_phase = distance * sources[i].frequency + time_scaled * sources[i].phase_speed;
wave_sum += sin(wave_phase) * sources[i].amplitude;
}
// Add noise modulation for organic feel
float noise_scale = params.noise_intensity;
float noise_x = coord.x * 0xffff * noise_scale;
float noise_y = coord.y * 0xffff * noise_scale;
uint32_t noise_time = time_ms << params.time_bitshift;
float noise_mod = (inoise16(noise_x, noise_y, noise_time) - 32768) / 65536.0f;
wave_sum += noise_mod * params.noise_amplitude;
// Map to color space
return mapWaveToColor(wave_sum, params);
}
private:
CRGB mapWaveToColor(float wave_value, const PlasmaParams& params) {
// Normalize wave to 0-1 range
float normalized = (wave_value + 4.0f) / 8.0f; // Assuming max amplitude ~4
normalized = constrain(normalized, 0.0f, 1.0f);
// Create flowing hue based on wave phase
uint8_t hue = (uint8_t)(normalized * 255.0f + params.hue_offset) % 256;
// Dynamic saturation based on wave intensity
float intensity = abs(wave_value);
uint8_t sat = (uint8_t)(192 + intensity * 63); // High saturation with variation
// Brightness modulation
uint8_t val = (uint8_t)(normalized * 255.0f * params.brightness);
return CHSV(hue, sat, val);
}
};
// Advanced Color Palette System
class ColorPaletteManager {
private:
uint8_t current_palette = 0;
uint32_t last_palette_change = 0;
static const uint32_t PALETTE_CHANGE_INTERVAL = 5000; // 5 seconds
public:
void update(uint32_t now, bool auto_cycle_enabled, uint8_t manual_palette) {
if (auto_cycle_enabled) {
if (now - last_palette_change > PALETTE_CHANGE_INTERVAL) {
current_palette = (current_palette + 1) % 5;
last_palette_change = now;
}
} else {
current_palette = manual_palette;
}
}
CRGB mapColor(float hue_norm, float intensity, float special_param = 0.0f) {
switch(current_palette) {
case 0: return mapSunsetBoulevard(hue_norm, intensity, special_param);
case 1: return mapOceanBreeze(hue_norm, intensity, special_param);
case 2: return mapNeonNights(hue_norm, intensity, special_param);
case 3: return mapForestWhisper(hue_norm, intensity, special_param);
case 4: return mapGalaxyExpress(hue_norm, intensity, special_param);
default: return mapSunsetBoulevard(hue_norm, intensity, special_param);
}
}
private:
CRGB mapSunsetBoulevard(float hue_norm, float intensity, float special_param) {
// Warm oranges, deep reds, golden yellows (Hue 0-45)
uint8_t hue = (uint8_t)(hue_norm * 45);
uint8_t sat = 200 + (uint8_t)(intensity * 55);
uint8_t val = 150 + (uint8_t)(intensity * 105);
return CHSV(hue, sat, val);
}
CRGB mapOceanBreeze(float hue_norm, float intensity, float special_param) {
// Deep blues, aqua, seafoam green (Hue 120-210)
uint8_t hue = 120 + (uint8_t)(hue_norm * 90);
uint8_t sat = 180 + (uint8_t)(intensity * 75);
uint8_t val = 120 + (uint8_t)(intensity * 135);
return CHSV(hue, sat, val);
}
CRGB mapNeonNights(float hue_norm, float intensity, float special_param) {
// Electric pink, cyan, purple, lime green - high contrast
uint8_t base_hues[] = {0, 85, 128, 192}; // Red, Cyan, Pink, Purple
uint8_t selected_hue = base_hues[(int)(hue_norm * 4) % 4];
uint8_t sat = 255; // Maximum saturation for neon effect
uint8_t val = 100 + (uint8_t)(intensity * 155);
return CHSV(selected_hue, sat, val);
}
CRGB mapForestWhisper(float hue_norm, float intensity, float special_param) {
// Deep greens, earth browns, golden highlights (Hue 60-150)
uint8_t hue = 60 + (uint8_t)(hue_norm * 90);
uint8_t sat = 150 + (uint8_t)(intensity * 105);
uint8_t val = 100 + (uint8_t)(intensity * 155);
return CHSV(hue, sat, val);
}
CRGB mapGalaxyExpress(float hue_norm, float intensity, float special_param) {
// Deep purples, cosmic blues, silver stars (Hue 200-300)
if (special_param > 0.8f) {
// Silver/white stars
uint8_t brightness = 200 + (uint8_t)(intensity * 55);
return CRGB(brightness, brightness, brightness);
} else {
uint8_t hue = 200 + (uint8_t)(hue_norm * 100);
uint8_t sat = 180 + (uint8_t)(intensity * 75);
uint8_t val = 80 + (uint8_t)(intensity * 175);
return CHSV(hue, sat, val);
}
}
};
// ALL 10 ALGORITHM IMPLEMENTATIONS
CRGB drawCosmicSwirl(const RingCoord& coord, uint32_t time_ms, ColorPaletteManager& palette) {
float time_factor = time_ms * 0.0008f;
// Multi-octave noise for organic complexity
float noise1 = inoise16(coord.x * 2000, coord.y * 2000, time_factor * 1000) / 65536.0f;
float noise2 = inoise16(coord.x * 1000, coord.y * 1000, time_factor * 2000) / 65536.0f * 0.5f;
float noise3 = inoise16(coord.x * 4000, coord.y * 4000, time_factor * 500) / 65536.0f * 0.25f;
float combined_noise = noise1 + noise2 + noise3;
float hue_norm = (combined_noise + coord.angle / (2*M_PI) + 1.0f) * 0.5f;
float intensity = (combined_noise + 1.0f) * 0.5f;
return palette.mapColor(hue_norm, intensity);
}
CRGB drawElectricStorm(const RingCoord& coord, uint32_t time_ms, ColorPaletteManager& palette) {
uint32_t fast_time = time_ms << 3; // 8x time acceleration
float x_noise = coord.x * 8000;
float y_noise = coord.y * 8000;
uint16_t noise1 = inoise16(x_noise, y_noise, fast_time);
uint16_t noise2 = inoise16(x_noise + 10000, y_noise + 10000, fast_time + 5000);
uint8_t threshold = 200;
bool lightning = (noise1 >> 8) > threshold || (noise2 >> 8) > threshold;
if (lightning) {
float lightning_intensity = max((noise1 >> 8) - threshold, (noise2 >> 8) - threshold) / 55.0f;
return palette.mapColor(0.7f, lightning_intensity, 1.0f); // Special lightning effect
} else {
float storm_intensity = (noise1 >> 8) / 1020.0f; // Very low intensity for background
return palette.mapColor(0.6f, storm_intensity);
}
}
CRGB drawLavaLamp(const RingCoord& coord, uint32_t time_ms, ColorPaletteManager& palette) {
float slow_time = time_ms * 0.0002f;
float blob_scale = 800;
uint16_t primary_noise = inoise16(coord.x * blob_scale, coord.y * blob_scale, slow_time * 1000);
uint16_t secondary_noise = inoise16(coord.x * blob_scale * 0.5f, coord.y * blob_scale * 0.5f, slow_time * 1500);
float blob_value = (primary_noise + secondary_noise * 0.3f) / 65536.0f;
if (blob_value > 0.6f) {
// Hot blob center
float intensity = (blob_value - 0.6f) / 0.4f;
return palette.mapColor(0.1f, intensity); // Warm colors
} else if (blob_value > 0.3f) {
// Blob edge gradient
float edge_factor = (blob_value - 0.3f) / 0.3f;
return palette.mapColor(0.2f, edge_factor);
} else {
// Background
return palette.mapColor(0.8f, 0.2f); // Cool background
}
}
CRGB drawDigitalRain(const RingCoord& coord, uint32_t time_ms, ColorPaletteManager& palette) {
float vertical_pos = sin(coord.angle) * 0.5f + 0.5f;
float cascade_speed = 0.002f;
float time_offset = time_ms * cascade_speed;
int stream_id = (int)(coord.angle * 10) % 8;
float stream_phase = fmod(vertical_pos + time_offset + stream_id * 0.125f, 1.0f);
uint16_t noise = inoise16(stream_id * 1000, stream_phase * 10000, time_ms / 4);
uint8_t digital_value = (noise >> 8) > 128 ? 255 : 0;
if (digital_value > 0) {
float intensity = 1.0f - stream_phase * 0.8f; // Fade trailing
return palette.mapColor(0.4f, intensity); // Matrix green area
} else {
return CRGB::Black;
}
}
CRGB drawGlitchCity(const RingCoord& coord, uint32_t time_ms, ColorPaletteManager& palette) {
uint32_t glitch_time = (time_ms / 100) * 100; // Quantize time
uint16_t noise1 = inoise16(coord.x * 3000, coord.y * 3000, glitch_time);
uint16_t noise2 = inoise16(coord.x * 5000, coord.y * 5000, glitch_time + 1000);
uint16_t glitch_value = noise1 ^ noise2; // XOR for harsh digital effects
if ((glitch_value & 0xF000) == 0xF000) {
return CRGB(255, 255, 255); // Full-bright glitch flash
}
float intensity = (glitch_value & 0xFF) / 255.0f;
float hue_chaos = ((glitch_value >> 8) & 0xFF) / 255.0f;
return palette.mapColor(hue_chaos, intensity, 0.5f);
}
CRGB drawOceanDepths(const RingCoord& coord, uint32_t time_ms, ColorPaletteManager& palette) {
float ocean_time = time_ms * 0.0005f;
float current1 = inoise16(coord.x * 1200, coord.y * 1200, ocean_time * 800) / 65536.0f;
float current2 = inoise16(coord.x * 2400, coord.y * 2400, ocean_time * 600) / 65536.0f * 0.5f;
float current3 = inoise16(coord.x * 600, coord.y * 600, ocean_time * 1000) / 65536.0f * 0.3f;
float depth_factor = (current1 + current2 + current3 + 1.5f) / 3.0f;
float hue_variation = (current2 + 0.5f);
return palette.mapColor(hue_variation, depth_factor);
}
CRGB drawFireDance(const RingCoord& coord, uint32_t time_ms, ColorPaletteManager& palette) {
float vertical_component = sin(coord.angle) * 0.5f + 0.5f;
float flame_x = coord.x * 1500;
float flame_y = coord.y * 1500 + time_ms * 0.003f;
uint16_t turbulence = inoise16(flame_x, flame_y, time_ms);
float flame_intensity = (turbulence / 65536.0f) * (1.0f - vertical_component * 0.3f);
float fire_hue = flame_intensity * 0.15f; // Red to orange range
return palette.mapColor(fire_hue, flame_intensity);
}
CRGB drawNebulaDrift(const RingCoord& coord, uint32_t time_ms, ColorPaletteManager& palette) {
float nebula_time = time_ms * 0.0003f;
float cloud1 = inoise16(coord.x * 800, coord.y * 800, nebula_time * 1000) / 65536.0f;
float cloud2 = inoise16(coord.x * 1600, coord.y * 1600, nebula_time * 700) / 65536.0f * 0.5f;
float cloud3 = inoise16(coord.x * 400, coord.y * 400, nebula_time * 1200) / 65536.0f * 0.25f;
float nebula_density = cloud1 + cloud2 + cloud3;
uint16_t star_noise = inoise16(coord.x * 4000, coord.y * 4000, nebula_time * 200);
bool is_star = (star_noise > 60000);
if (is_star) {
float star_intensity = (star_noise - 60000) / 5536.0f;
return palette.mapColor(0.0f, star_intensity, 1.0f); // Stars
} else {
float hue_drift = (nebula_density + 1.0f) * 0.5f;
float intensity = (nebula_density + 1.0f) * 0.4f;
return palette.mapColor(hue_drift, intensity);
}
}
CRGB drawBinaryPulse(const RingCoord& coord, uint32_t time_ms, ColorPaletteManager& palette) {
float pulse_period = 2000.0f;
float pulse_phase = fmod(time_ms, pulse_period) / pulse_period;
float distance_from_center = sqrt(coord.x * coord.x + coord.y * coord.y);
float ring_frequency = 5.0f;
float pulse_offset = pulse_phase * 2.0f;
float ring_value = sin((distance_from_center * ring_frequency - pulse_offset) * 2 * M_PI);
uint16_t noise = inoise16(coord.x * 2000, coord.y * 2000, time_ms / 8);
float digital_mod = ((noise >> 8) > 128) ? 1.0f : -0.5f;
float final_value = ring_value * digital_mod;
if (final_value > 0.3f) {
return palette.mapColor(0.8f, final_value, 0.8f); // Active pulse
} else if (final_value > -0.2f) {
float transition_intensity = (final_value + 0.2f) * 2.0f;
return palette.mapColor(0.3f, transition_intensity); // Transition zones
} else {
return palette.mapColor(0.7f, 0.1f); // Background
}
}
// Enhanced variant manager with ALL 10 ALGORITHMS and smooth transitions
class NoiseVariantManager {
private:
uint8_t current_variant = 0;
uint8_t target_variant = 0;
float transition_progress = 1.0f; // 0.0 = old, 1.0 = new
uint32_t transition_start = 0;
static const uint32_t TRANSITION_DURATION = 1500; // 1.5 second fade for smoother transitions
// Algorithm instances
PlasmaWaveGenerator plasma_gen;
PlasmaParams plasma_params;
ColorPaletteManager& palette_manager;
public:
NoiseVariantManager(ColorPaletteManager& palette_mgr) : palette_manager(palette_mgr) {}
void update(uint32_t now, bool auto_cycle_enabled, uint8_t manual_variant, const PlasmaParams& params) {
plasma_params = params;
// Handle automatic cycling vs manual override
if (auto_cycle_enabled) {
EVERY_N_MILLISECONDS(12000) { // Slightly longer for each variant
startTransition((current_variant + 1) % 10, now); // ALL 10 variants
}
} else if (manual_variant != target_variant && transition_progress >= 1.0f) {
// Manual override
startTransition(manual_variant, now);
}
// Update transition progress
if (transition_progress < 1.0f) {
uint32_t elapsed = now - transition_start;
transition_progress = min(1.0f, elapsed / (float)TRANSITION_DURATION);
if (transition_progress >= 1.0f) {
current_variant = target_variant;
}
}
}
CRGB renderPixel(const RingCoord& coord, uint32_t time_ms) {
if (transition_progress >= 1.0f) {
// No transition, render current variant
return renderVariant(current_variant, coord, time_ms);
} else {
// Advanced cross-fade with brightness preservation
CRGB old_color = renderVariant(current_variant, coord, time_ms);
CRGB new_color = renderVariant(target_variant, coord, time_ms);
return smoothLerpCRGB(old_color, new_color, transition_progress);
}
}
uint8_t getCurrentVariant() const { return current_variant; }
const char* getCurrentVariantName() const {
const char* names[] = {
"Cosmic Swirl", "Electric Storm", "Lava Lamp", "Digital Rain", "Plasma Waves",
"Glitch City", "Ocean Depths", "Fire Dance", "Nebula Drift", "Binary Pulse"
};
return names[current_variant % 10];
}
private:
void startTransition(uint8_t new_variant, uint32_t now) {
target_variant = new_variant % 10; // Ensure valid range
transition_start = now;
transition_progress = 0.0f;
}
CRGB renderVariant(uint8_t variant, const RingCoord& coord, uint32_t time_ms) {
switch(variant % 10) {
case 0: return drawCosmicSwirl(coord, time_ms, palette_manager);
case 1: return drawElectricStorm(coord, time_ms, palette_manager);
case 2: return drawLavaLamp(coord, time_ms, palette_manager);
case 3: return drawDigitalRain(coord, time_ms, palette_manager);
case 4: return drawPlasmaWithPalette(coord, time_ms, palette_manager);
case 5: return drawGlitchCity(coord, time_ms, palette_manager);
case 6: return drawOceanDepths(coord, time_ms, palette_manager);
case 7: return drawFireDance(coord, time_ms, palette_manager);
case 8: return drawNebulaDrift(coord, time_ms, palette_manager);
case 9: return drawBinaryPulse(coord, time_ms, palette_manager);
default: return drawCosmicSwirl(coord, time_ms, palette_manager);
}
}
// Enhanced Plasma Waves with palette integration
CRGB drawPlasmaWithPalette(const RingCoord& coord, uint32_t time_ms, ColorPaletteManager& palette) {
// Generate base plasma waves
CRGB plasma_color = plasma_gen.calculatePlasmaPixel(coord, time_ms, plasma_params);
// Extract intensity and hue information from plasma
float intensity = (plasma_color.r + plasma_color.g + plasma_color.b) / 765.0f;
// Calculate wave interference for hue mapping
float time_scaled = time_ms * plasma_params.time_scale * 0.001f;
float wave_sum = 0.0f;
// Simplified wave calculation for hue determination
float dx = coord.x - 0.5f;
float dy = coord.y - 0.5f;
float distance = sqrt(dx*dx + dy*dy);
float wave_phase = distance * 2.0f + time_scaled * 1.5f;
wave_sum = sin(wave_phase);
float hue_norm = (wave_sum + 1.0f) * 0.5f; // Normalize to 0-1
// Use palette system for consistent color theming
return palette.mapColor(hue_norm, intensity, intensity > 0.8f ? 1.0f : 0.0f);
}
// Enhanced interpolation with brightness preservation and smooth curves
CRGB smoothLerpCRGB(const CRGB& a, const CRGB& b, float t) {
// Apply smooth curve to transition
float smooth_t = t * t * (3.0f - 2.0f * t); // Smoothstep function
// Preserve brightness during transition to avoid flickering
float brightness_a = (a.r + a.g + a.b) / 765.0f;
float brightness_b = (b.r + b.g + b.b) / 765.0f;
float target_brightness = brightness_a + (brightness_b - brightness_a) * smooth_t;
CRGB result = CRGB(
a.r + (int)((b.r - a.r) * smooth_t),
a.g + (int)((b.g - a.g) * smooth_t),
a.b + (int)((b.b - a.b) * smooth_t)
);
// Brightness compensation
float current_brightness = (result.r + result.g + result.b) / 765.0f;
if (current_brightness > 0.01f) {
float compensation = target_brightness / current_brightness;
compensation = min(compensation, 2.0f); // Limit boost
result.r = min(255, (int)(result.r * compensation));
result.g = min(255, (int)(result.g * compensation));
result.b = min(255, (int)(result.b * compensation));
}
return result;
}
};
// ALL 10 Variant names for UI
fl::string variant_names[10] = {
"Cosmic Swirl", "Electric Storm", "Lava Lamp", "Digital Rain", "Plasma Waves",
"Glitch City", "Ocean Depths", "Fire Dance", "Nebula Drift", "Binary Pulse"
};
// 5 Color Palette names for UI
fl::string palette_names[5] = {
"Sunset Boulevard", "Ocean Breeze", "Neon Nights", "Forest Whisper", "Galaxy Express"
};
// Helper functions to get indices from names
uint8_t getVariantIndex(const fl::string& name) {
for (int i = 0; i < 10; i++) {
if (variant_names[i] == name) {
return i;
}
}
return 0; // Default to first variant
}
uint8_t getPaletteIndex(const fl::string& name) {
for (int i = 0; i < 5; i++) {
if (palette_names[i] == name) {
return i;
}
}
return 0; // Default to first palette
}
// Global instances - order matters for initialization
ColorPaletteManager palette_manager;
NoiseVariantManager variant_manager(palette_manager);
RingLUT ring_lut;
// KICKASS UI controls - comprehensive control suite
UISlider brightness("Brightness", 1, 0, 1);
UISlider scale("Scale", 4, .1, 4, .1);
UISlider timeBitshift("Time Bitshift", 5, 0, 16, 1);
UISlider timescale("Time Scale", 1, .1, 10, .1);
// Advanced variant and palette controls
UIDropdown variants("Noise Variants", variant_names);
UIDropdown palettes("Color Palettes", palette_names);
UICheckbox autoCycle("Auto Cycle Effects", true);
UICheckbox autoPalette("Auto Cycle Palettes", true);
// This PIR type is special because it will bind to a pin for a real device,
// but also provides a UIButton when run in the simulator.
Pir pir(PIN_PIR, PIR_LATCH_MS, PIR_RISING_TIME, PIR_FALLING_TIME);
UICheckbox useDither("Use Binary Dither", true);
Timer timer;
float current_brightness = 0;
// Save a pointer to the controller so that we can modify the dither in real time.
CLEDController* controller = nullptr;
void setup() {
Serial.begin(115200);
// ScreenMap is purely something that is needed for the sketch to correctly
// show on the web display. For deployements to real devices, this essentially
// becomes a no-op.
ScreenMap xyMap = ScreenMap::Circle(NUM_LEDS, 2.0, 2.0);
controller = &FastLED.addLeds<WS2811, LED_PIN, COLOR_ORDER>(leds, NUM_LEDS)
.setCorrection(TypicalLEDStrip)
.setDither(DISABLE_DITHER)
.setScreenMap(xyMap);
FastLED.setBrightness(brightness);
pir.activate(millis()); // Activate the PIR sensor on startup.
// Initialize performance optimizations
ring_lut.initialize();
}
void draw(uint32_t now) {
// Configure plasma parameters from UI controls with enhanced scaling
PlasmaParams plasma_params;
plasma_params.time_scale = timescale.as<float>();
plasma_params.noise_intensity = scale.as<float>() * 0.8f; // Slightly reduce for better visual balance
plasma_params.brightness = brightness.as<float>();
plasma_params.time_bitshift = timeBitshift.as<int>();
plasma_params.hue_offset = (now / 100) % 256; // Slow hue rotation for extra dynamism
plasma_params.noise_amplitude = 0.6f + 0.4f * sin(now * 0.001f); // Breathing noise effect
// Update palette manager with auto-cycling and manual control
palette_manager.update(now, autoPalette.value(), getPaletteIndex(palettes.value()));
// Update variant manager with enhanced parameters
variant_manager.update(now, autoCycle.value(), getVariantIndex(variants.value()), plasma_params);
// KICKASS rendering with performance optimizations
for (int i = 0; i < NUM_LEDS; i++) {
RingCoord coord = ring_lut.fastRingCoord(i);
CRGB pixel_color = variant_manager.renderPixel(coord, now);
// Apply global brightness and gamma correction for better visual quality
float global_brightness = brightness.as<float>();
pixel_color.r = (uint8_t)(pixel_color.r * global_brightness);
pixel_color.g = (uint8_t)(pixel_color.g * global_brightness);
pixel_color.b = (uint8_t)(pixel_color.b * global_brightness);
leds[i] = pixel_color;
}
// Optional: Add subtle sparkle overlay for extra visual interest
EVERY_N_MILLISECONDS(50) {
// Add random sparkles to 1% of LEDs
int sparkle_count = NUM_LEDS / 100 + 1;
for (int s = 0; s < sparkle_count; s++) {
int sparkle_pos = random16() % NUM_LEDS;
if (random8() > 250) { // Very rare sparkles
leds[sparkle_pos] = blend(leds[sparkle_pos], CRGB::White, 128);
}
}
}
}
void loop() {
// Allow the dither to be enabled and disabled.
controller->setDither(useDither ? BINARY_DITHER : DISABLE_DITHER);
uint32_t now = millis();
uint8_t bri = pir.transition(now);
FastLED.setBrightness(bri * brightness.as<float>());
// Apply leds generation to the leds.
draw(now);
FastLED.show();
}

View File

@@ -0,0 +1,11 @@
#include "fl/sketch_macros.h"
#if SKETCH_HAS_LOTS_OF_MEMORY
#include "FxNoiseRing.h"
#else
void setup() {}
void loop() {}
#endif // SKETCH_HAS_LOTS_OF_MEMORY

View File

@@ -0,0 +1,760 @@
# NoiseRing Enhanced Design Document
## Overview
Enhanced version of the FxNoiseRing example that automatically cycles through different noise effects and color palettes, providing dynamic visual variety with user controls for manual selection.
**Featured Implementation**: **Plasma Waves** - Advanced graphics technique showcasing sine wave interference with noise modulation, demonstrating sophisticated mathematical visualization on circular LED arrays.
## Core Features
### Automatic Cycling
- **Palette Rotation**: Every 5 seconds using `EVERY_N_MILLISECONDS(5000)`
- **Noise Effect Rotation**: Every 10 seconds using `EVERY_N_MILLISECONDS(10000)`
- **User Override**: Dropdown controls allow manual selection to override automatic cycling
### User Interface Controls
- **Variants Dropdown**: "Noise Variants" - Manual selection of noise effects (0-9)
- **Palettes Dropdown**: "Color Palettes" - Manual selection of color schemes (0-4)
- **Auto Cycle Checkbox**: "Auto Cycle" - Enable/disable automatic rotation
- **Existing Controls**: Retain all current sliders (Brightness, Scale, Time Bitshift, Time Scale, PIR, Dither)
## 10 Noise Variations - Detailed Algorithmic Implementation
### 1. "Cosmic Swirl" - Enhanced Perlin Flow
- **Description**: Classic perlin noise with slow, flowing movements using multi-octave complexity
- **Parameters**: Base noise with moderate scale, gentle time progression
- **Characteristics**: Smooth gradients, organic flow patterns
**Algorithm**:
```cpp
CRGB drawCosmicSwirl(const RingCoord& coord, uint32_t time_ms) {
float time_factor = time_ms * 0.0008f;
// Multi-octave noise for organic complexity
float noise1 = inoise16(coord.x * 2000, coord.y * 2000, time_factor * 1000) / 65536.0f;
float noise2 = inoise16(coord.x * 1000, coord.y * 1000, time_factor * 2000) / 65536.0f * 0.5f;
float noise3 = inoise16(coord.x * 4000, coord.y * 4000, time_factor * 500) / 65536.0f * 0.25f;
float combined_noise = noise1 + noise2 + noise3;
// Flowing hue with gentle progression
uint8_t hue = (uint8_t)((combined_noise + coord.angle / (2*M_PI)) * 255) % 256;
uint8_t sat = 220 + (uint8_t)(abs(noise2) * 35);
uint8_t val = 180 + (uint8_t)(combined_noise * 75);
return CHSV(hue, sat, val);
}
```
### 2. "Electric Storm" - High-Frequency Chaos
- **Description**: High-frequency noise with rapid temporal changes creating lightning effects
- **Parameters**: 8x time acceleration, high spatial frequency, quantized thresholds
- **Characteristics**: Crackling, energetic, lightning-like patterns
**Algorithm**:
```cpp
CRGB drawElectricStorm(const RingCoord& coord, uint32_t time_ms) {
// Rapid temporal changes with quantized effects
uint32_t fast_time = time_ms << 3; // 8x time acceleration
// High-frequency spatial noise
float x_noise = coord.x * 8000;
float y_noise = coord.y * 8000;
uint16_t noise1 = inoise16(x_noise, y_noise, fast_time);
uint16_t noise2 = inoise16(x_noise + 10000, y_noise + 10000, fast_time + 5000);
// Create lightning-like quantization
uint8_t threshold = 200;
bool lightning = (noise1 >> 8) > threshold || (noise2 >> 8) > threshold;
if (lightning) {
// Bright electric flash
uint8_t intensity = max((noise1 >> 8) - threshold, (noise2 >> 8) - threshold) * 4;
return CRGB(intensity, intensity, 255); // Electric blue-white
} else {
// Dark storm background
uint8_t hue = 160 + ((noise1 >> 10) % 32); // Blue-purple range
return CHSV(hue, 255, (noise1 >> 8) / 4); // Low brightness
}
}
```
### 3. "Lava Lamp" - Slow Blobby Movement
- **Description**: Slow, blobby movements with high contrast using low-frequency modulation
- **Parameters**: Ultra-low frequency, high amplitude, threshold-based blob creation
- **Characteristics**: Large, slow-moving color blobs with organic boundaries
**Algorithm**:
```cpp
CRGB drawLavaLamp(const RingCoord& coord, uint32_t time_ms) {
float slow_time = time_ms * 0.0002f; // Very slow movement
// Large-scale blob generation
float blob_scale = 800; // Large spatial scale for big blobs
uint16_t primary_noise = inoise16(coord.x * blob_scale, coord.y * blob_scale, slow_time * 1000);
uint16_t secondary_noise = inoise16(coord.x * blob_scale * 0.5f, coord.y * blob_scale * 0.5f, slow_time * 1500);
// Create blob boundaries with thresholding
float blob_value = (primary_noise + secondary_noise * 0.3f) / 65536.0f;
// High contrast blob regions
if (blob_value > 0.6f) {
// Hot blob center
uint8_t hue = 0 + (uint8_t)((blob_value - 0.6f) * 400); // Red to orange
return CHSV(hue, 255, 255);
} else if (blob_value > 0.3f) {
// Blob edge gradient
float edge_factor = (blob_value - 0.3f) / 0.3f;
uint8_t brightness = (uint8_t)(edge_factor * 255);
return CHSV(20, 200, brightness); // Orange edge
} else {
// Background
return CHSV(240, 100, 30); // Dark blue background
}
}
```
### 4. "Digital Rain" - Matrix Cascade
- **Description**: Matrix-style cascading effect using vertical noise mapping
- **Parameters**: Angle-to-vertical conversion, time-based cascade, stream segregation
- **Characteristics**: Vertical streams, binary-like transitions, matrix green
**Algorithm**:
```cpp
CRGB drawDigitalRain(const RingCoord& coord, uint32_t time_ms) {
// Convert angle to vertical position for cascade effect
float vertical_pos = sin(coord.angle) * 0.5f + 0.5f; // 0-1 range
// Time-based cascade with varying speeds
float cascade_speed = 0.002f;
float time_offset = time_ms * cascade_speed;
// Create vertical streams
int stream_id = (int)(coord.angle * 10) % 8; // 8 distinct streams
float stream_phase = fmod(vertical_pos + time_offset + stream_id * 0.125f, 1.0f);
// Binary-like transitions
uint16_t noise = inoise16(stream_id * 1000, stream_phase * 10000, time_ms / 4);
uint8_t digital_value = (noise >> 8) > 128 ? 255 : 0;
// Matrix green with digital artifacts
uint8_t green_intensity = digital_value;
uint8_t trailing = max(0, green_intensity - (int)(stream_phase * 200));
return CRGB(0, green_intensity, trailing / 2);
}
```
### 5. "Plasma Waves" - **FEATURED IMPLEMENTATION**
- **Description**: Multiple overlapping sine waves with noise modulation creating electromagnetic plasma effects
- **Parameters**: 4-source wave interference, noise modulation, dynamic color mapping
- **Characteristics**: Smooth wave interference patterns, flowing electromagnetic appearance
**Algorithm**:
```cpp
class PlasmaWaveGenerator {
private:
struct WaveSource {
float x, y; // Source position
float frequency; // Wave frequency
float amplitude; // Wave strength
float phase_speed; // Phase evolution rate
};
WaveSource sources[4] = {
{0.5f, 0.5f, 1.0f, 1.0f, 0.8f}, // Center source
{0.0f, 0.0f, 1.5f, 0.8f, 1.2f}, // Corner source
{1.0f, 1.0f, 0.8f, 1.2f, 0.6f}, // Opposite corner
{0.5f, 0.0f, 1.2f, 0.9f, 1.0f} // Edge source
};
public:
CRGB calculatePlasmaPixel(const RingCoord& coord, uint32_t time_ms, const PlasmaParams& params) {
float time_scaled = time_ms * params.time_scale * 0.001f;
// Calculate wave interference
float wave_sum = 0.0f;
for (int i = 0; i < 4; i++) {
float dx = coord.x - sources[i].x;
float dy = coord.y - sources[i].y;
float distance = sqrt(dx*dx + dy*dy);
float wave_phase = distance * sources[i].frequency + time_scaled * sources[i].phase_speed;
wave_sum += sin(wave_phase) * sources[i].amplitude;
}
// Add noise modulation for organic feel
float noise_scale = params.noise_intensity;
float noise_x = coord.x * 0xffff * noise_scale;
float noise_y = coord.y * 0xffff * noise_scale;
uint32_t noise_time = time_ms << params.time_bitshift;
float noise_mod = (inoise16(noise_x, noise_y, noise_time) - 32768) / 65536.0f;
wave_sum += noise_mod * params.noise_amplitude;
// Map to color space
return mapWaveToColor(wave_sum, params);
}
private:
CRGB mapWaveToColor(float wave_value, const PlasmaParams& params) {
// Normalize wave to 0-1 range
float normalized = (wave_value + 4.0f) / 8.0f; // Assuming max amplitude ~4
normalized = constrain(normalized, 0.0f, 1.0f);
// Create flowing hue based on wave phase
uint8_t hue = (uint8_t)(normalized * 255.0f + params.hue_offset) % 256;
// Dynamic saturation based on wave intensity
float intensity = abs(wave_value);
uint8_t sat = (uint8_t)(192 + intensity * 63); // High saturation with variation
// Brightness modulation
uint8_t val = (uint8_t)(normalized * 255.0f * params.brightness);
return CHSV(hue, sat, val);
}
};
struct PlasmaParams {
float time_scale = 1.0f;
float noise_intensity = 0.5f;
float noise_amplitude = 0.8f;
uint8_t time_bitshift = 5;
uint8_t hue_offset = 0;
float brightness = 1.0f;
};
```
### 6. "Glitch City" - Chaotic Digital Artifacts
- **Description**: Chaotic, stuttering effects with quantized noise and bit manipulation
- **Parameters**: Time quantization, XOR operations, random bit shifts
- **Characteristics**: Harsh transitions, digital artifacts, strobe-like effects
**Algorithm**:
```cpp
CRGB drawGlitchCity(const RingCoord& coord, uint32_t time_ms) {
// Stuttering time progression
uint32_t glitch_time = (time_ms / 100) * 100; // Quantize time to create stutters
// Bit manipulation for digital artifacts
uint16_t noise1 = inoise16(coord.x * 3000, coord.y * 3000, glitch_time);
uint16_t noise2 = inoise16(coord.x * 5000, coord.y * 5000, glitch_time + 1000);
// XOR operation for harsh digital effects
uint16_t glitch_value = noise1 ^ noise2;
// Random bit shifts for channel corruption
uint8_t r = (glitch_value >> (time_ms % 8)) & 0xFF;
uint8_t g = (glitch_value << (time_ms % 5)) & 0xFF;
uint8_t b = ((noise1 | noise2) >> 4) & 0xFF;
// Occasional full-bright flashes
if ((glitch_value & 0xF000) == 0xF000) {
return CRGB(255, 255, 255);
}
return CRGB(r, g, b);
}
```
### 7. "Ocean Depths" - Underwater Currents
- **Description**: Slow, deep undulations mimicking underwater currents with blue-green bias
- **Parameters**: Ultra-low frequency, blue-green color bias, depth-based brightness
- **Characteristics**: Calm, flowing, deep water feel with gentle undulations
**Algorithm**:
```cpp
CRGB drawOceanDepths(const RingCoord& coord, uint32_t time_ms) {
float ocean_time = time_ms * 0.0005f; // Very slow like deep water
// Multi-layer current simulation
float current1 = inoise16(coord.x * 1200, coord.y * 1200, ocean_time * 800) / 65536.0f;
float current2 = inoise16(coord.x * 2400, coord.y * 2400, ocean_time * 600) / 65536.0f * 0.5f;
float current3 = inoise16(coord.x * 600, coord.y * 600, ocean_time * 1000) / 65536.0f * 0.3f;
float depth_factor = current1 + current2 + current3;
// Ocean color palette (blue-green spectrum)
uint8_t base_hue = 140; // Cyan-blue
uint8_t hue_variation = (uint8_t)(abs(depth_factor) * 40); // Vary within blue-green
uint8_t final_hue = (base_hue + hue_variation) % 256;
// Depth-based brightness (deeper = darker)
uint8_t depth_brightness = 120 + (uint8_t)(depth_factor * 135);
uint8_t saturation = 200 + (uint8_t)(abs(current2) * 55);
return CHSV(final_hue, saturation, depth_brightness);
}
```
### 8. "Fire Dance" - Upward Flame Simulation
- **Description**: Flickering, flame-like patterns with upward bias and turbulent noise
- **Parameters**: Vertical gradient bias, turbulent noise, fire color palette
- **Characteristics**: Orange/red dominated, upward movement, flickering
**Algorithm**:
```cpp
CRGB drawFireDance(const RingCoord& coord, uint32_t time_ms) {
// Vertical bias for upward flame movement
float vertical_component = sin(coord.angle) * 0.5f + 0.5f; // 0 at bottom, 1 at top
// Turbulent noise with upward bias
float flame_x = coord.x * 1500;
float flame_y = coord.y * 1500 + time_ms * 0.003f; // Upward drift
uint16_t turbulence = inoise16(flame_x, flame_y, time_ms);
float flame_intensity = (turbulence / 65536.0f) * (1.0f - vertical_component * 0.3f);
// Fire color palette (red->orange->yellow)
uint8_t base_hue = 0; // Red
uint8_t hue_variation = (uint8_t)(flame_intensity * 45); // Up to orange/yellow
uint8_t final_hue = (base_hue + hue_variation) % 256;
uint8_t saturation = 255 - (uint8_t)(vertical_component * 100); // Less saturated at top
uint8_t brightness = (uint8_t)(flame_intensity * 255);
return CHSV(final_hue, saturation, brightness);
}
```
### 9. "Nebula Drift" - Cosmic Cloud Simulation
- **Description**: Slow cosmic clouds with starfield sparkles using multi-octave noise
- **Parameters**: Multiple noise octaves, sparse bright spots, cosmic color palette
- **Characteristics**: Misty backgrounds with occasional bright stars
**Algorithm**:
```cpp
CRGB drawNebulaDrift(const RingCoord& coord, uint32_t time_ms) {
float nebula_time = time_ms * 0.0003f; // Cosmic slow drift
// Multi-octave nebula clouds
float cloud1 = inoise16(coord.x * 800, coord.y * 800, nebula_time * 1000) / 65536.0f;
float cloud2 = inoise16(coord.x * 1600, coord.y * 1600, nebula_time * 700) / 65536.0f * 0.5f;
float cloud3 = inoise16(coord.x * 400, coord.y * 400, nebula_time * 1200) / 65536.0f * 0.25f;
float nebula_density = cloud1 + cloud2 + cloud3;
// Sparse starfield generation
uint16_t star_noise = inoise16(coord.x * 4000, coord.y * 4000, nebula_time * 200);
bool is_star = (star_noise > 60000); // Very sparse stars
if (is_star) {
// Bright white/blue stars
uint8_t star_brightness = 200 + ((star_noise - 60000) / 256);
return CRGB(star_brightness, star_brightness, 255);
} else {
// Nebula background
uint8_t nebula_hue = 200 + (uint8_t)(nebula_density * 80); // Purple-pink spectrum
uint8_t nebula_sat = 150 + (uint8_t)(abs(cloud2) * 105);
uint8_t nebula_bright = 40 + (uint8_t)(nebula_density * 120);
return CHSV(nebula_hue, nebula_sat, nebula_bright);
}
}
```
### 10. "Binary Pulse" - Digital Heartbeat
- **Description**: Digital heartbeat with expanding/contracting rings using threshold-based noise
- **Parameters**: Concentric pattern generation, rhythmic pulsing, geometric thresholds
- **Characteristics**: Rhythmic, geometric, tech-inspired
**Algorithm**:
```cpp
CRGB drawBinaryPulse(const RingCoord& coord, uint32_t time_ms) {
// Create rhythmic heartbeat timing
float pulse_period = 2000.0f; // 2-second pulse cycle
float pulse_phase = fmod(time_ms, pulse_period) / pulse_period; // 0-1 cycle
// Generate expanding rings from center
float distance_from_center = sqrt(coord.x * coord.x + coord.y * coord.y);
// Pulse wave propagation
float ring_frequency = 5.0f; // Number of rings
float pulse_offset = pulse_phase * 2.0f; // Expanding wave
float ring_value = sin((distance_from_center * ring_frequency - pulse_offset) * 2 * M_PI);
// Digital quantization
uint16_t noise = inoise16(coord.x * 2000, coord.y * 2000, time_ms / 8);
float digital_mod = ((noise >> 8) > 128) ? 1.0f : -0.5f;
float final_value = ring_value * digital_mod;
// Binary color mapping
if (final_value > 0.3f) {
// Active pulse regions
uint8_t intensity = (uint8_t)(final_value * 255);
return CRGB(intensity, 0, intensity); // Magenta pulse
} else if (final_value > -0.2f) {
// Transition zones
uint8_t dim_intensity = (uint8_t)((final_value + 0.2f) * 500);
return CRGB(0, dim_intensity, 0); // Green transitions
} else {
// Background
return CRGB(10, 0, 20); // Dark purple background
}
}
```
## 5 Color Palettes
### 1. "Sunset Boulevard"
- **Colors**: Warm oranges, deep reds, golden yellows
- **Description**: Classic sunset gradient perfect for relaxing ambiance
- **HSV Range**: Hue 0-45, high saturation, varying brightness
### 2. "Ocean Breeze"
- **Colors**: Deep blues, aqua, seafoam green, white caps
- **Description**: Cool ocean palette for refreshing visual effects
- **HSV Range**: Hue 120-210, medium-high saturation
### 3. "Neon Nights"
- **Colors**: Electric pink, cyan, purple, lime green
- **Description**: Cyberpunk-inspired high-contrast palette
- **HSV Range**: Saturated primaries, high brightness contrasts
### 4. "Forest Whisper"
- **Colors**: Deep greens, earth browns, golden highlights
- **Description**: Natural woodland palette for organic feels
- **HSV Range**: Hue 60-150, natural saturation levels
### 5. "Galaxy Express"
- **Colors**: Deep purples, cosmic blues, silver stars, pink nebula
- **Description**: Space-themed palette for cosmic adventures
- **HSV Range**: Hue 200-300, with bright white accents
## Implementation Strategy
### Core Mathematical Framework
```cpp
// Enhanced coordinate system for ring-based effects
struct RingCoord {
float angle; // Position on ring (0 to 2π)
float radius; // Distance from center (normalized 0-1)
float x, y; // Cartesian coordinates
int led_index; // LED position on strip
};
// Convert LED index to ring coordinates
RingCoord calculateRingCoord(int led_index, int num_leds, float time_offset = 0.0f) {
RingCoord coord;
coord.led_index = led_index;
coord.angle = (led_index * 2.0f * M_PI / num_leds) + time_offset;
coord.radius = 1.0f; // Fixed radius for ring
coord.x = cos(coord.angle);
coord.y = sin(coord.angle);
return coord;
}
// Performance optimization with lookup tables
class RingLUT {
private:
float cos_table[NUM_LEDS];
float sin_table[NUM_LEDS];
public:
void initialize() {
for(int i = 0; i < NUM_LEDS; i++) {
float angle = i * 2.0f * M_PI / NUM_LEDS;
cos_table[i] = cos(angle);
sin_table[i] = sin(angle);
}
}
RingCoord fastRingCoord(int led_index, float time_offset = 0.0f) {
RingCoord coord;
coord.led_index = led_index;
coord.angle = (led_index * 2.0f * M_PI / NUM_LEDS) + time_offset;
coord.x = cos_table[led_index];
coord.y = sin_table[led_index];
coord.radius = 1.0f;
return coord;
}
};
```
### Enhanced Control System with Smooth Transitions
```cpp
class NoiseVariantManager {
private:
uint8_t current_variant = 0;
uint8_t target_variant = 0;
float transition_progress = 1.0f; // 0.0 = old, 1.0 = new
uint32_t transition_start = 0;
static const uint32_t TRANSITION_DURATION = 1000; // 1 second fade
// Algorithm instances
PlasmaWaveGenerator plasma_gen;
PlasmaParams plasma_params;
public:
void update(uint32_t now, bool auto_cycle_enabled, uint8_t manual_variant) {
// Handle automatic cycling vs manual override
if (auto_cycle_enabled) {
EVERY_N_MILLISECONDS(10000) {
startTransition((current_variant + 1) % 10, now);
}
} else if (manual_variant != target_variant && transition_progress >= 1.0f) {
// Manual override
startTransition(manual_variant, now);
}
// Update transition progress
if (transition_progress < 1.0f) {
uint32_t elapsed = now - transition_start;
transition_progress = min(1.0f, elapsed / (float)TRANSITION_DURATION);
if (transition_progress >= 1.0f) {
current_variant = target_variant;
}
}
}
CRGB renderPixel(const RingCoord& coord, uint32_t time_ms) {
if (transition_progress >= 1.0f) {
// No transition, render current variant
return renderVariant(current_variant, coord, time_ms);
} else {
// Blend between variants
CRGB old_color = renderVariant(current_variant, coord, time_ms);
CRGB new_color = renderVariant(target_variant, coord, time_ms);
return lerpCRGB(old_color, new_color, transition_progress);
}
}
private:
void startTransition(uint8_t new_variant, uint32_t now) {
target_variant = new_variant;
transition_start = now;
transition_progress = 0.0f;
}
CRGB renderVariant(uint8_t variant, const RingCoord& coord, uint32_t time_ms) {
switch(variant) {
case 0: return drawCosmicSwirl(coord, time_ms);
case 1: return drawElectricStorm(coord, time_ms);
case 2: return drawLavaLamp(coord, time_ms);
case 3: return drawDigitalRain(coord, time_ms);
case 4: return plasma_gen.calculatePlasmaPixel(coord, time_ms, plasma_params);
case 5: return drawGlitchCity(coord, time_ms);
case 6: return drawOceanDepths(coord, time_ms);
case 7: return drawFireDance(coord, time_ms);
case 8: return drawNebulaDrift(coord, time_ms);
case 9: return drawBinaryPulse(coord, time_ms);
default: return CRGB::Black;
}
}
CRGB lerpCRGB(const CRGB& a, const CRGB& b, float t) {
return CRGB(
a.r + (int)((b.r - a.r) * t),
a.g + (int)((b.g - a.g) * t),
a.b + (int)((b.b - a.b) * t)
);
}
};
```
### Data Structures and UI Integration
```cpp
// Enhanced data structures
String variant_names[10] = {
"Cosmic Swirl", "Electric Storm", "Lava Lamp", "Digital Rain", "Plasma Waves",
"Glitch City", "Ocean Depths", "Fire Dance", "Nebula Drift", "Binary Pulse"
};
String palette_names[5] = {
"Sunset Boulevard", "Ocean Breeze", "Neon Nights", "Forest Whisper", "Galaxy Express"
};
// Global instances
NoiseVariantManager variant_manager;
RingLUT ring_lut;
// Enhanced UI controls
UIDropdown variants("Noise Variants", variant_names, 10);
UIDropdown palettes("Color Palettes", palette_names, 5);
UICheckbox autoCycle("Auto Cycle", true);
```
### Integration with Existing Framework
```cpp
void setup() {
Serial.begin(115200);
ScreenMap xyMap = ScreenMap::Circle(NUM_LEDS, 2.0, 2.0);
controller = &FastLED.addLeds<WS2811, LED_PIN, COLOR_ORDER>(leds, NUM_LEDS)
.setCorrection(TypicalLEDStrip)
.setDither(DISABLE_DITHER)
.setScreenMap(xyMap);
FastLED.setBrightness(brightness);
pir.activate(millis());
// Initialize performance optimizations
ring_lut.initialize();
}
void draw(uint32_t now) {
// Update variant manager
variant_manager.update(now, autoCycle.value(), variants.value());
// Render each LED with current variant
for (int i = 0; i < NUM_LEDS; i++) {
RingCoord coord = ring_lut.fastRingCoord(i);
leds[i] = variant_manager.renderPixel(coord, now);
}
}
void loop() {
controller->setDither(useDither ? BINARY_DITHER : DISABLE_DITHER);
uint32_t now = millis();
uint8_t bri = pir.transition(now);
FastLED.setBrightness(bri * brightness.as<float>());
draw(now);
FastLED.show();
}
```
## Technical Considerations
### Performance Optimization
- **Lookup Table Pre-computation**: Pre-calculate trigonometric values for ring positions
- **Fixed-Point Arithmetic**: Use integer math where possible for embedded systems
- **Noise Caching**: Cache noise parameters between frames for consistent animation
- **Memory-Efficient Algorithms**: Optimize noise calculations for real-time performance
- **Parallel Processing**: Structure algorithms for potential multi-core optimization
### Memory Management
- **PROGMEM Storage**: Store palettes and static data in program memory for Arduino compatibility
- **Dynamic Allocation Avoidance**: Minimize heap usage during effect transitions
- **Stack Optimization**: Use local variables efficiently in nested algorithm calls
- **Buffer Management**: Reuse coordinate calculation buffers where possible
### Mathematical Precision
- **16-bit Noise Space**: Maintain precision in noise calculations before 8-bit mapping
- **Floating Point Efficiency**: Balance precision vs. performance based on target platform
- **Color Space Optimization**: Use HSV for smooth transitions, RGB for final output
- **Numerical Stability**: Prevent overflow/underflow in wave interference calculations
### User Experience
- **Smooth Transitions**: 1-second cross-fade between effects using linear interpolation
- **Responsive Controls**: Immediate override of automatic cycling via manual selection
- **Visual Feedback**: Clear indication of current variant and palette selection
- **Performance Consistency**: Maintain stable frame rate across all effect variants
## First Pass Implementation: Plasma Waves
### Why Start with Plasma Waves?
1. **Visual Impact**: Most impressive demonstration of advanced graphics programming
2. **Mathematical Showcase**: Demonstrates sine wave interference and noise modulation
3. **Building Foundation**: Establishes the RingCoord system used by all other variants
4. **Performance Baseline**: Tests the most computationally intensive algorithm first
### Development Strategy
```cpp
// Phase 1: Core Infrastructure
void setupPlasmaDemo() {
// Initialize basic ring coordinate system
ring_lut.initialize();
// Configure plasma parameters
plasma_params.time_scale = timescale.as<float>();
plasma_params.noise_intensity = scale.as<float>();
plasma_params.brightness = brightness.as<float>();
}
// Phase 2: Plasma-Only Implementation
void drawPlasmaOnly(uint32_t now) {
for (int i = 0; i < NUM_LEDS; i++) {
RingCoord coord = ring_lut.fastRingCoord(i);
leds[i] = plasma_gen.calculatePlasmaPixel(coord, now, plasma_params);
}
}
// Phase 3: Add Manual Variants (No Auto-Cycling Yet)
void drawWithManualSelection(uint32_t now) {
uint8_t selected_variant = variants.value();
for (int i = 0; i < NUM_LEDS; i++) {
RingCoord coord = ring_lut.fastRingCoord(i);
switch(selected_variant) {
case 0: leds[i] = drawCosmicSwirl(coord, now); break;
case 1: leds[i] = plasma_gen.calculatePlasmaPixel(coord, now, plasma_params); break;
// Add variants incrementally
default: leds[i] = plasma_gen.calculatePlasmaPixel(coord, now, plasma_params);
}
}
}
// Phase 4: Full System with Auto-Cycling and Transitions
void drawFullSystem(uint32_t now) {
variant_manager.update(now, autoCycle.value(), variants.value());
for (int i = 0; i < NUM_LEDS; i++) {
RingCoord coord = ring_lut.fastRingCoord(i);
leds[i] = variant_manager.renderPixel(coord, now);
}
}
```
### Testing and Validation
1. **Plasma Waves Only**: Verify smooth wave interference and noise modulation
2. **Parameter Responsiveness**: Test all UI sliders affect plasma generation correctly
3. **Performance Metrics**: Measure frame rate with plasma algorithm on target hardware
4. **Visual Quality**: Confirm smooth color transitions and no artifacts
5. **Memory Usage**: Monitor RAM consumption during plasma calculations
### Incremental Development Plan
1. **Week 1**: Implement Plasma Waves algorithm and RingCoord system
2. **Week 2**: Add 2-3 simpler variants (Cosmic Swirl, Electric Storm, Fire Dance)
3. **Week 3**: Implement transition system and automatic cycling
4. **Week 4**: Add remaining variants and color palette system
5. **Week 5**: Optimization, polish, and platform-specific tuning
## Advanced Graphics Techniques Demonstrated
### Wave Interference Mathematics
The plasma algorithm showcases classical physics simulation:
- **Superposition Principle**: Multiple wave sources combine linearly
- **Phase Relationships**: Time-varying phase creates animation
- **Distance-Based Attenuation**: Realistic wave propagation modeling
- **Noise Modulation**: Organic variation through Perlin noise overlay
### Color Theory Implementation
- **HSV Color Space**: Smooth hue transitions for natural color flow
- **Saturation Modulation**: Dynamic saturation based on wave intensity
- **Brightness Mapping**: Normalized wave values to brightness curves
- **Gamma Correction**: Perceptually linear brightness progression
### Performance Optimization Strategies
- **Trigonometric Lookup**: Pre-computed sine/cosine tables
- **Fixed-Point Math**: Integer approximations for embedded platforms
- **Loop Unrolling**: Minimize function call overhead in tight loops
- **Memory Access Patterns**: Cache-friendly coordinate calculations
## Future Enhancements
### Advanced Features
- **Save/Load Configurations**: User-defined effect combinations and parameters
- **BPM Synchronization**: Music-reactive timing for effect transitions
- **Custom Palette Editor**: User-defined color schemes with preview
- **Effect Intensity Controls**: Per-variant amplitude and speed modulation
- **Multi-Ring Support**: Expand to multiple concentric LED rings
### Platform Extensions
- **Multi-Core Optimization**: Parallel processing for complex calculations
- **GPU Acceleration**: WebGL compute shaders for web platform
- **Hardware Acceleration**: Platform-specific optimizations (ESP32, Teensy)
- **Memory Mapping**: Direct hardware buffer access for maximum performance
### Algorithm Enhancements
- **Physically-Based Rendering**: More realistic light simulation
- **Particle Systems**: Dynamic particle-based effects
- **Fractal Algorithms**: Mandelbrot and Julia set visualizations
- **Audio Visualization**: Spectrum analysis and reactive algorithms

View File

@@ -0,0 +1,58 @@
#pragma once
#include "fl/stdint.h"
/**
* @brief A simple timer utility class for tracking timed events
*
* This class provides basic timer functionality for animations and effects.
* It can be used to track whether a specific duration has elapsed since
* the timer was started.
*/
class Timer {
public:
/**
* @brief Construct a new Timer object
*
* Creates a timer in the stopped state with zero duration.
*/
Timer() : start_time(0), duration(0), running(false) {}
/**
* @brief Start the timer with a specific duration
*
* @param now Current time in milliseconds (typically from millis())
* @param duration How long the timer should run in milliseconds
*/
void start(uint32_t now, uint32_t duration) {
start_time = now;
this->duration = duration;
running = true;
}
/**
* @brief Update the timer state based on current time
*
* Checks if the timer is still running based on the current time.
* If the specified duration has elapsed, the timer will stop.
*
* @param now Current time in milliseconds (typically from millis())
* @return true if the timer is still running, false if stopped or elapsed
*/
bool update(uint32_t now) {
if (!running) {
return false;
}
uint32_t elapsed = now - start_time;
if (elapsed > duration) {
running = false;
return false;
}
return true;
}
private:
uint32_t start_time; // When the timer was started (in milliseconds)
uint32_t duration; // How long the timer should run (in milliseconds)
bool running; // Whether the timer is currently active
};