Files

160 lines
5.1 KiB
C++

/// @file FxWater.ino
/// @brief Water effect with XYMap
/// @example FxWater.ino
///
/// This sketch is fully compatible with the FastLED web compiler. To use it do the following:
/// 1. Install Fastled: `pip install fastled`
/// 2. cd into this examples page.
/// 3. Run the FastLED web compiler at root: `fastled`
/// 4. When the compiler is done a web page will open.
// Author: sutaburosu
// based on https://web.archive.org/web/20160418004149/http://freespace.virgin.net/hugo.elias/graphics/x_water.htm
#include <FastLED.h>
#include "Arduino.h"
#include "fl/xymap.h"
using namespace fl;
#define WIDTH 32
#define HEIGHT 32
#define NUM_LEDS ((WIDTH) * (HEIGHT))
CRGB leds[NUM_LEDS];
// the water needs 2 arrays each slightly bigger than the screen
#define WATERWIDTH (WIDTH + 2)
#define WATERHEIGHT (HEIGHT + 2)
uint8_t water[2][WATERWIDTH * WATERHEIGHT];
void wu_water(uint8_t * const buf, uint16_t x, uint16_t y, uint8_t bright);
void process_water(uint8_t * src, uint8_t * dst) ;
void setup() {
Serial.begin(115200);
FastLED.addLeds<NEOPIXEL, 2>(leds, NUM_LEDS).setScreenMap(WIDTH, HEIGHT);
}
// from: https://github.com/FastLED/FastLED/pull/202
CRGB MyColorFromPaletteExtended(const CRGBPalette16& pal, uint16_t index, uint8_t brightness, TBlendType blendType) {
// Extract the four most significant bits of the index as a palette index.
uint8_t index_4bit = (index >> 12);
// Calculate the 8-bit offset from the palette index.
uint8_t offset = (uint8_t)(index >> 4);
// Get the palette entry from the 4-bit index
const CRGB* entry = &(pal[0]) + index_4bit;
uint8_t red1 = entry->red;
uint8_t green1 = entry->green;
uint8_t blue1 = entry->blue;
uint8_t blend = offset && (blendType != NOBLEND);
if (blend) {
if (index_4bit == 15) {
entry = &(pal[0]);
} else {
entry++;
}
// Calculate the scaling factor and scaled values for the lower palette value.
uint8_t f1 = 255 - offset;
red1 = scale8_LEAVING_R1_DIRTY(red1, f1);
green1 = scale8_LEAVING_R1_DIRTY(green1, f1);
blue1 = scale8_LEAVING_R1_DIRTY(blue1, f1);
// Calculate the scaled values for the neighbouring palette value.
uint8_t red2 = entry->red;
uint8_t green2 = entry->green;
uint8_t blue2 = entry->blue;
red2 = scale8_LEAVING_R1_DIRTY(red2, offset);
green2 = scale8_LEAVING_R1_DIRTY(green2, offset);
blue2 = scale8_LEAVING_R1_DIRTY(blue2, offset);
cleanup_R1();
// These sums can't overflow, so no qadd8 needed.
red1 += red2;
green1 += green2;
blue1 += blue2;
}
if (brightness != 255) {
// nscale8x3_video(red1, green1, blue1, brightness);
nscale8x3(red1, green1, blue1, brightness);
}
return CRGB(red1, green1, blue1);
}
// Rectangular grid
XYMap xyMap(WIDTH, HEIGHT, false);
// map X & Y coordinates onto a horizontal serpentine matrix layout
uint16_t XY(uint8_t x, uint8_t y) {
return xyMap.mapToIndex(x, y);
}
void loop() {
// swap the src/dest buffers on each frame
static uint8_t buffer = 0;
uint8_t * const bufA = &water[buffer][0];
buffer = (buffer + 1) % 2;
uint8_t * const bufB = &water[buffer][0];
// add a moving stimulus
wu_water(bufA, beatsin16(13, 256, HEIGHT * 256), beatsin16(7, 256, WIDTH * 256), beatsin8(160, 64, 255));
// animate the water
process_water(bufA, bufB);
// display the water effect on the LEDs
uint8_t * input = bufB + WATERWIDTH - 1;
static uint16_t pal_offset = 0;
pal_offset += 256;
for (uint8_t y = 0; y < HEIGHT; y++) {
input += 2;
for (uint8_t x = 0; x < WIDTH; x++) {
leds[XY(x, y)] = MyColorFromPaletteExtended(RainbowColors_p, pal_offset + (*input++ << 8), 255, LINEARBLEND);
}
}
FastLED.show();
}
void process_water(uint8_t * src, uint8_t * dst) {
src += WATERWIDTH - 1;
dst += WATERWIDTH - 1;
for (uint8_t y = 1; y < WATERHEIGHT - 1; y++) {
src += 2; dst += 2;
for (uint8_t x = 1; x < WATERWIDTH - 1; x++) {
uint16_t t = src[-1] + src[1] + src[-WATERWIDTH] + src[WATERWIDTH];
t >>= 1;
if (dst[0] < t)
dst[0] = t - dst[0];
else
dst[0] = 0;
dst[0] -= dst[0] >> 6;
src++; dst++;
}
}
}
// draw a blob of 4 pixels with their relative brightnesses conveying sub-pixel positioning
void wu_water(uint8_t * const buf, uint16_t x, uint16_t y, uint8_t bright) {
// extract the fractional parts and derive their inverses
uint8_t xx = x & 0xff, yy = y & 0xff, ix = 255 - xx, iy = 255 - yy;
// calculate the intensities for each affected pixel
#define WU_WEIGHT(a, b) ((uint8_t)(((a) * (b) + (a) + (b)) >> 8))
uint8_t wu[4] = {WU_WEIGHT(ix, iy), WU_WEIGHT(xx, iy),
WU_WEIGHT(ix, yy), WU_WEIGHT(xx, yy)
};
#undef WU_WEIGHT
// multiply the intensities by the colour, and saturating-add them to the pixels
for (uint8_t i = 0; i < 4; i++) {
uint8_t local_x = (x >> 8) + (i & 1);
uint8_t local_y = (y >> 8) + ((i >> 1) & 1);
uint16_t xy = WATERWIDTH * local_y + local_x;
if (xy >= WATERWIDTH * WATERHEIGHT) continue;
uint16_t this_bright = bright * wu[i];
buf[xy] = qadd8(buf[xy], this_bright >> 8);
}
}